The Infrared Spectra of Methylhydropolysiloxanes

By Minoru SAKIYAMA

(Received July 11, 1957)

Infrared spectra of methylpolysiloxanes were studied by Wright and Hunter¹⁾ and their conclusions were ascertained by Richards and Thompson²⁾. There are characteristic absorption bands common to all the methylpolysiloxanes at 1260 cm⁻¹ (CH₃—Si) and 1000—1100 cm⁻¹ (Si—O—Si), and the characteristic bands associated with the structural units were found as follows:

Unit	Absorption Band (cm-1))
$(CH_3)_3SiO_{1/2}$	841, 754—6	
$(CH_3)_2SiO_{2/2}$	800—14	
CH ₂ SiO ₂ /2	800	

From these, one can conclude that the assignment of the group frequency to the siloxane unit is satisfactory.

It is interesting to study methylhydropolysiloxanes having hydrogen atoms attached directly to silicon atoms. Recently, methylhydropolysiloxanes³⁾ involving the units, $H(CH_3)_2SiO_{1/2}$ and $H(CH_3)SiO_{2/2}$, were synthesized. In this paper, the infrared spectra of these compounds will be described and especially it is intended to determine whether the group frequency can be assigned or not to these units.

The following short hand notation will be used to indicate the various polysiloxanes.

Notation	Unit
M'.	$H(CH_3)_2SiO_{1/2}$
M	$(CH_3)_3SiO_{1/2}$
\mathbf{D}'	$H(CH_3)SiO_{2/2}$
\mathbf{D}	$(CH_3)_2SiO_{2/2}$
${f T}$	CH ₃ SiO _{3/2}
Q	$SiO_{4/2}$

Experimental

Materials.—The compounds used in this experiment were as follows:

Linear polysiloxanes;	
$\mathbf{M}'\mathbf{D}'_{n}\mathbf{M}'$	n=0, 1, 2, 3
$\mathbf{MD'}_{n}\mathbf{M}$	n=1,2,3,4,5
$\mathbf{M}'\mathbf{D}_n\mathbf{M}'$	n=1,2
M'D'DM', MM'	

cyclic polysiloxanes;

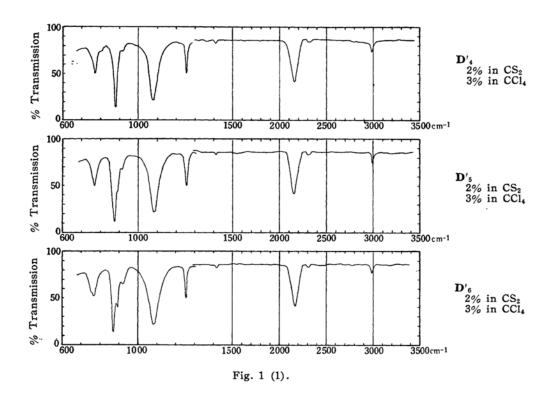
$\mathbf{D'}_n$	n = 4, 5, 6
$\mathbf{D}'_{n}\mathbf{D}_{4-n}$	n=1, 2, 3

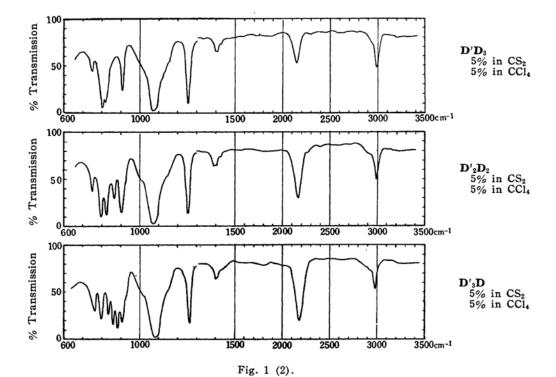
branched polysiloxane;

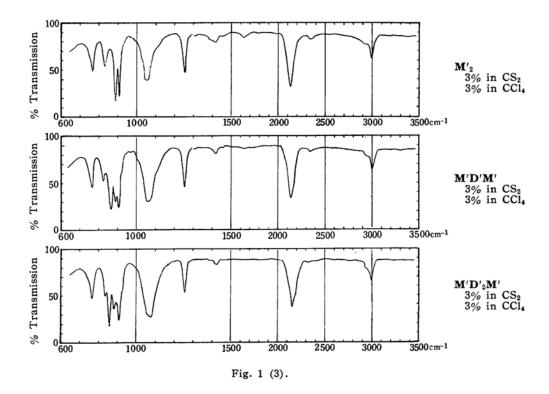
 M'_3T

Measurements.-Spectra were obtained with a Hilger H-800 infrared spectrophotometer with a rock salt prism. Samples were observed as solutions, 2~5% solution in carbon disulfide being used in the range 700 to 1500 cm⁻¹ and 3∼5% in carbon tetrachloride from 1250 to 5000 cm⁻¹. Pure liquid was also used. No appreciable difference was observed between both cases. The cells were 0.03 mm. thick for solution and less than 0.01 mm. for pure liquid. In order to compare relative intensities approximately, the spectra of the compounds belonging to the same series (such as $M'D'_nM'$, n=0-3) were recorded on a same chart, keeping the conditions as similar as possible. M'2, M'D'M', M'D'2M', M'D'3M' and M'D'DM' were measured also with a Perkin-Elmer Model 21 spectrophotometer with a calcium fluoride prism in the range 1500 to 3300 cm⁻¹. The cells were 0.026 and 0.109 mm. thick and the concentration of the solution was 3% in carbon tetrachloride. The spectra and the position of the absorption bands are presented in Fig. 1 and Table I~III respectively.

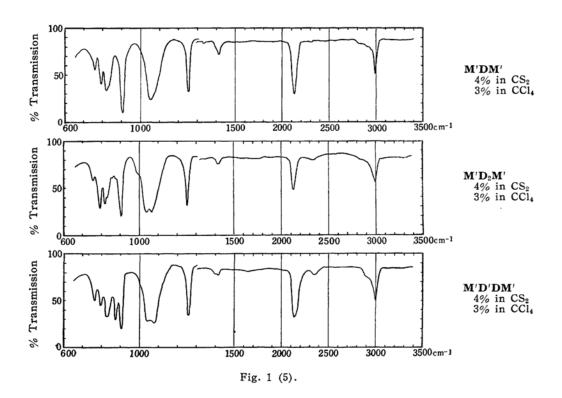
TABLE I

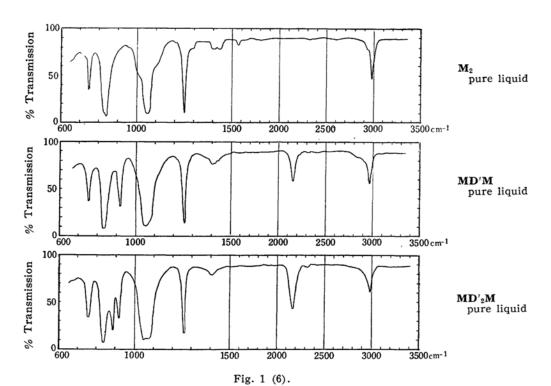

METHYLHYDROPOLYSILOXANES: POSITIONS
OF BANDS (in cm⁻¹)


$\mathbf{D'}_n$			$\mathbf{D}'_{n}\mathbf{D}_{4-n}$			
n=4	5	6	$\widetilde{\mathbf{D}'\mathbf{D_3}}$	$\mathbf{D'_2D_2}$	$\mathbf{D}'_{3}\mathbf{D}$	
771	769	767	751	755	761	
			801	798	795	
			818	826	831	
880	874	870		867	858	
	893	892			884	
917	916	919	906	905	903	
1085	1086	1082	1070	1078	1081	
1258	1258	1258	1256	1256	1258	
			1397	1395	1399	
1405	1409	1409	1407	1408	1410	
2162	2159	2162	2148	2158	2170	
2991	2987	2991	2990	2985	2991	


N. Wright and M. J. Hunter, J. Am. Chem. Soc., 69, 803 (1947).

R. E. Richards and H. W. Thompson, J. Chem. Soc., 1949, 124.


R. Okawara and M. Sakiyama, This Bulletin, 29, 236, 547 (1956); R. Okawara, U. Takahashi and M. Sakiyama, ibid., 30, 608 (1957).



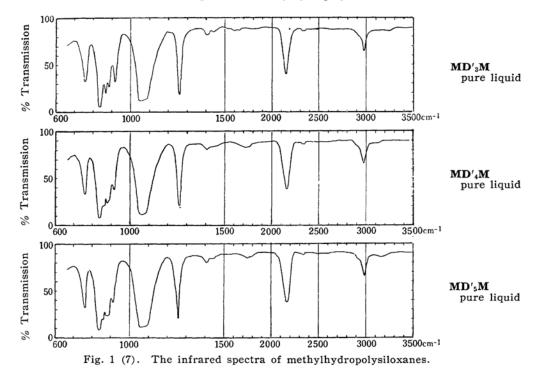


Table II

Methylhydropolysiloxanes: Positions of bands (in cm $^{-1}$) $\mathbf{M'D'}_{n}\mathbf{M'}$ $\mathbf{M'D_{n}M'}$

	W. I	nit		IVI D _n IVI				
n=0	1	2	3	MM'	$\mathbf{M'}_{3}\mathbf{T}$	M'DM'	$\mathbf{M}'\mathbf{D}_2\mathbf{M}'$	M'D'DM'
763	764	763	765	755	763	760	759	761
						794	792	791
					798			
832	824	833	834	834	830	820	820	826
	861	856	854					874
878	885	881	884					
906	902	905	907	904	899	906	901	904
1055	1063	1072	1074	1054	1059	1055	1037	1045
							1070	1075
1252	1255	1253	1254	1258	1253	1254	1254	1256
					1262			
1416	1413	1413	1413	1414	1419	1412	1405	1406
2129	2136	2137	2140	2114	2132	2130	2126	2134
	2169	2169	2169					
2931	2931	2920	2922	2912	2924	2920	2924	2905
2990	2993	2988	2988	2968	3004	2983	2983	2983

Discussion of the Results

Si-H Vibration.—The most remarkable difference between the spectra of dimethylpolysiloxanes^{1,2)} and those discussed in this study, is that a strong band in the 2100 cm⁻¹ region is present only in the latter. This band is characteristic of the organosilicon compounds containing an Si-H bond, and has been assigned to the stretching vibration involving an Si-H

bond⁴⁾. In this case also, it will be attributable to that vibration because all the compounds contain this bond.

Two kinds of methylhydrosiloxy unit, one chain-forming \mathbf{D}' unit and the other chain-terminating unit \mathbf{M}' , are involved in the compounds studied. It is of interest to study whether the position of this band

⁴⁾ For example, (a): 2135 cm⁻¹ in (C₆H₅)₃SiH and 2108 cm⁻¹ in (n-C₃H₇)₃SiH (L. Kaplan, *J. Am. Chem. Soc.*, **76**, 5880 (1954)) and (b): 2258 cm⁻¹ in HSiCl₃ (J. G. Gibian and D. S. McKinney, ibid., **73**, 1431 (1951)).

MD' _n M						
n=0*	1	2	3	4	5	
749	751	762	762	762	762	
826	834	834	834	834	834	
840			867	860	858	
		879	886	878	875	
				890	891	
	914	913	913	912	912	
1055	1052	1046	1046	1050	1052	
1252	1258	1258	1258	1258	1258	
1405	1404	1402	1405	1407	1407	
	2149	2154	2159	2159	2159	
2927	2915	2914	2918	2918	2918	
2978	2965	2978	2978	2978	2978	

^{*} This spectrum was measured for comparison.

varies in these two units. In \mathbf{M}'_2 and \mathbf{D}'_4 , involving only one kind of unit, this band is found at $2129\,\mathrm{cm}^{-1}$ in the former and $2162\,\mathrm{cm}^{-1}$ in the latter. But in the compounds having both units, this band is not likely to have two peaks. For example, the relation of the bands of $\mathbf{M}'\mathbf{D}'\mathbf{M}'$ and $\mathbf{M}'\mathbf{D}'_3\mathbf{M}'$ with that of \mathbf{M}'_2 is illustrated in Fig. 2.

A similar broadening of the band is also observed in $\mathbf{M'D'_2M'}$, and $\mathbf{M'D'DM'}$. This band was not separated into two peaks although the spectra were abtained with a spectrophotometer with a calcium fluoride prism. The position of this band shifts to the side of less wave number

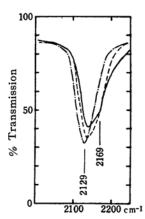


Fig. 2. Si—H stretching vibration bands of M'D'_nM'

In M'D'M' and $M'D'_3M'$, a weak band, which is absent in M'_2 is observed at 2169 cm^{-1} .

when the units, \mathbf{M} , \mathbf{D} and \mathbf{T} are introduced in a molecule. This relation is generally seen. For example, in the series $\mathbf{M}'\mathbf{D}_n\mathbf{M}'$, $\mathbf{D}'_n\mathbf{D}_{4-n}$ and $\mathbf{M}\mathbf{D}'_n\mathbf{M}$, in which Si-H content varies systematically along the series, not only the intensity but also the position of this band changes regularly.

Below 1000 cm⁻¹, a common band to all the compounds is observed at 760 cm⁻¹. Of course, **M** may give rise to a band in the same position in **MD**'_n**M** and **MM**'. This band, though more tentative than in the case of the band described above, seems to be able to be assigned to the bending vibration involving an Si—H bond as was suggested by Ulbrich⁵⁾ with the Raman spectra of **D**'₄ and **D**'₅. The position seems to be the same in both **M**' and **D**' units.

This assignment is consistent with the following facts once studied by other authres: (1) Trisubstituted silanes, HSiCl₃4b) (IR), $HSiBr_3^{6}$ (Raman) and $(C_6H_5)_3SiH^{4a}$ (IR) give rise to this band at 798, 767 and 805 cm⁻¹ respectively. (2) $H(CH_3)SiCl_2^{5}$, which gives D'_n by hydrolysis, has two bands at 753 and 805 cm⁻¹ in this region, of which only the former is kept in $D_{n'}$, while its position attributable to such a vibration will not be expected to vary after hydrolysis. (3) In the series $D_{n}'D_{4-n}$ and $M'D_nM'$, a similar relation is observed for the position and the intensity as was observed in the case of Si-H stretching band when D' is replaced by D, i.e., both intensity and wave number decrease as nincreases.

C—H Vibration.—In the region 2900—3000 cm⁻¹, all the compounds show the bands associated with the stretching vibration of C—H linkage. These bands consist of two bands near 2920 and 2980 cm⁻¹. The former is weaker than the latter and may be a combination or overtone band. The latter is also weak as shown in the case of methylpolysiloxane¹⁾. It is interesting to compare this intensity with that of Si—H stretching vibration bands.

The band near 1410 cm⁻¹ will be attributed to the methyl deformation vibration. To a sharp intense band near 1260 cm⁻¹ some different assignments have been made. The workers¹⁾ who studied methylpolysiloxanes attributed them to the methyl rocking vibration and others who studied tetramethylsilane to the sym-

⁵⁾ R. Ulbrich, Z. Naturforsch., 9B, 380 (1954).

J. M. Delfosse and R. G. Ghoovaerts, Bull. Berg.,
 11, 410 (1935): F. Francois and H. Buisset, Compt. rend.,
 1230, 1946 (1950).

metrical deformation mode⁷⁾ or γ -(CH) vibration⁸⁾ of the methyl group. In this study, it is impossible to determine the assignment of this band, but it has become clearer that this band is related to the CH₃-(Si) group since this band is observed in all the compounds. In a branched polysiloxane M'_3T , this band has two peaks at 1253 and 1262 cm⁻¹ and the former is more intense than the latter as was reported¹⁾ in M_3T and M_4Q .

Si—O Vibration.—The strong absorption band in the region 1000—1100 cm⁻¹ is probably associated with Si—O linkage. This band occurs in the range 1070—1085 cm⁻¹ in the cyclic compounds, 1045—1060 cm⁻¹ in the linear and the branched compounds. In M'DM', M'D'DM' and M'D₂M', this band consists of two peaks.

Characteristic Bands below 1000 cm⁻¹. All the bands which have been assigned to M, D and T in the study of methylpolysiloxanes are found without exception also in the spectra of methylhydropolysiloxanes containing these units. In D',D4-n, the intensity of 800 cm⁻¹ band of D clearly increases as is expected from the increasing group concentration, but the wave number is less than those which were reported and decreases as D is replaced by D'. At least, within the limits of this study, it may be said that the conclusion of Wright and Richards are confirmed.

There are three bands at 906, 878 and 832 cm⁻¹ in M'₂. They are observed also in the other members of M'D'_nM' and their intensities clearly decrease when n increases. In the compounds having both M' and other units (M, D or T), i.e., MM', M'D_nM', M'D'DM' and M'₃T, only one band is found instead of the former two bands. Therefore it may probably be considered that one or two bands in the range 870—910 cm⁻¹ are characteristic of the unit M'. The 832 cm⁻¹ band is found at the same position also in other compounds but in MM' this band may overlap with the M band at 841 cm⁻¹.

A new band occurs at $861 \,\mathrm{cm}^{-1}$ in $\mathbf{M'D'M'}$, which is absent in $\mathbf{M'}_2$. This band is caused by the introduction of $\mathbf{D'}$ unit and moves to the side of lower wave

7) C. W. Young, J. S. Koehler and D. S. McKinney,

number as the group concentration increases in $\mathbf{M'D_n'M'}$. This band is found at $874\,\mathrm{cm^{-1}}$ in $\mathbf{M'D'DM'}$. In $\mathbf{MD'_nM}$, the greater the n, the more complex the spectra. All the members of this series ($n \ge 1$) have a band at $914\,\mathrm{cm^{-1}}$. Except this band, $\mathbf{MD'_2M}$ has one band, $\mathbf{M'D'_3M}$ has two bands in this region, and so on. The number of bands in this region seems to increase.

A similar complexity is found also in $\mathbf{D}'_{n}\mathbf{D}_{4-n}$. Wright et al.¹⁾ found that \mathbf{D}_{4} has two bands at 862(strong) and 880 cm⁻¹ (weak). In D'_nD_{4-n} , a common band is found at 900 cm⁻¹. Except this band, D'D₃ has a band at $818 \,\mathrm{cm}^{-1}$, $\mathbf{D'}_2\mathbf{D}_2$ has two bands at 827 and 867 cm $^{-1}$ and $\mathbf{D}'_{3}\mathbf{D}$ has three bands at 831, 858 and 884 cm⁻¹. On the other hand \mathbf{D}'_4 has only one band in this region. It is necessary to point out that $\mathbf{D}'_{2}\mathbf{D}_{2}$ may be a mixture of two isomers, $_{|}$ -DDD'D'- $_{|}$ and $_{|}$ -DD'DD'- $_{|}$. In spite of this, the complexity of the spectra of the compound containing D' unit, either linear or cyclic, shows that this unit is less independent than other units and the group frequency treatment must be disclaimed with this unit.

Summary

- 1) Infrared spectra of some methylhydropolysiloxanes involving the units, $H(CH_3)_2SiO_{1/2}$ and $H(CH_3)SiO_{2/2}$, were studied. The assignments of Wright and Richards with methylpolysiloxanes were comfirmed in this study.
- 2) The stretching and the bending band involving an Si—H bond are found in the range 2120—2170 cm⁻¹ and 760 cm⁻¹, respectively.
- 3) Characteristic absorption bands of the unit $H(CH_3)_2SiO_{1/2}$ are observed near $900\,\mathrm{cm^{-1}}$ and $830\,\mathrm{cm^{-1}}$, while the unit $H(CH_3)SiO_{2/2}$ does not give the characteristic band and the band related with this unit is different in each compound.

The author wishes to express his sincere thanks to Dr. R. Okawara for encouragement and numerous suggestions throughout this investigation.

Department of Applied Chemistry Faculty of Engineering Osaka University Miyakojima-ku, Osaka

J. Am. Chem. Soc., 69, 1910 (1947).

8) D. H. Rank, B. D. Saksena and E. R. Shull, Discuss. Farad. Soc., 9, 187 (1950).